

www.inno-techbd.com

CONTACT +88 01329 681 900

About Us

Innovation Infra-Tech Ltd. is a growing multidisciplinary industrial business house in Bangladesh, has a long successful history. We keep pride in providing high quality service throughout Bangladesh. Our affordable services include customized design, installation, customized preventative maintenance and service for our clients in numerous industries.

Mission

Commitment to achieve customer satisfaction through continuous improvement in technical support with the latest technology. Maintain excellent reputation & expand our business on supplies & water management works.

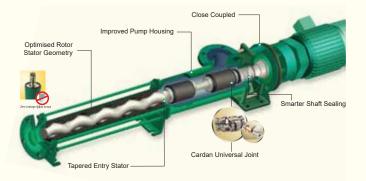
To become a professional leading pump & accessories supplier & water management service providing organization.

Value

Hello to all the tenants of earth. . .

We are continuously using water and other natural resources in an undefined way, but what will happen, when there will be no water.

So, come and join together to take an oath that we'll save water and hence OUR MOTHER EARTH.



Progressive Cavity Pump

/ Fluoroelastomer / Natural Black

Alloy Steel / Stainless Steel

UP/HCP

Case Hardened Steel / Alloy Steel HCP/ Stainless Steel

RM/RD/RL

One of the most dynamic designs for driving the flow of variety of liquids, Progressive Cavity Pumps can be customized to efficiently handle liquids with different viscosity levels and chemical properties. The Progressive Cavity Pumps comprise of a precision mechanized single external helix metallic rotor and double internal helix elastomer stator. As the rotor turns within stators, the cavity progresses from suction to discharge along with fluid. Due to the special profile of the rotor and stator set, a sealing line is formed along the axis of the rotor which is maintained at both static and dynamic conditions. As the rotor turns within the stator, these cavities progress from the suction to the discharge end of the pump carrying the fluid. So that it can transfer high viscous liquid with solid particle up to 3,000,000 cST.

	Tech	nical Data	
	Single Stage		Multistage
Capacity	up to 500 m3/hr	Capacity	up to 200 m3/hr
Pressure	up to 6 bar	Pressure	up to 48 bar
Standar	d PC Pump	Wide Throat PC Pump	
Food Gr	aded Pump	Dosing Pump	Vertical PC Pu
	Desigi	n Features	
Positive Displacem Because of single rotat deliver a uniform, mete	ent ting element, progressive cavities are generated wh red and Positive Displacement flow.	ich Minimum degradation of s viscous materials having p	shear-sensitive media, and can also handle high seudo-plastic characteristics.
Self Priming Inherently self-priming, valve.	, the pumps can work on snore and do not require a f	oot Due to the reversible rota perform with equal efficient	ation capabilities, Progressive Cavity Pumps ca ncy in either direction.
Non-Clogging Can handle solid in susp	pension or media containing a high percentage of solids	Silent Running Rotors turn inside a resilient	t stator and thus generate little noise.
Low NPSH Require Suction lift capabilities of	ment of up to 9.5 mwc and effective in high vacuum conditio	Separate Bearing Hou Fluids can be pumped with	ising out no contamination.
	Material	Composition	
	st Iron / Cast Stainless Steel / Fabricated Steel / pricated Stainless Steel	Rotor Surface Coatings	Ceramic Coatings / Tungsten Carbide / Hard Chrome Plating
	ile / High Nitrile / EPDM / Chloro-Sulphonated Rubbe	r Shaft	Allov Steel HCP/ Stainless Steel UP/HCP

Other Exotic Materials

Protective Coatings

Alloy Steel HCP/ Stainless Steel UP/HCP

Rubber Lining / Epoxy Coatings

Duplex / Super Duplex / Alloy 20 / Haste Alloy

Rotor

Coupling Rod:

Twin Screw Pumps

TSP

Roto Gear Timed Dual-Flow Twin Screw Pumps is dependent on the rotation of two screw spindles in closed compartment. Wherein, a predefined clearance is maintained between the screw spindles as well as between the outside diameter of the screw spindles and the bore of the casing/liner in which the screw spindles are located. Each half of the screw spindles is left-handed and right-handed. The dual flow nullifies the axial thrust completely thereby enabling the screw spindles to remain in a state of hydraulic balance. Roto's unique double profile of the screw spindles contributes to a higher volumetric efficiency, thus an improved overall efficiency. These pumps widely confirm to API 676, 3rd edition and are ATEX and CE certified.

Technical Data											
Flow Rate	Up to 940 m3/h	Pressure	Up to 40 Bar								
Viscosity	Up to 100,000 cST	Temperature	Up to 350°C								

Horizontal External Bearing

Horizontal Internal Bearing

Docian Footuroo

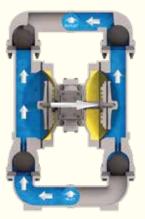
Vertical Twin Screw Pump

Design F	ealures
Long and Trouble-Free Service Life	Uniform Metered Flow
Due to absence of metal to metal contact between the pumping	Being a positive displacement pump, head developed is independent of
elements, Pump can even run dry for limited period of time.	speed & the capacity is approximately proportional to speed.
No Axial Thrust Dual flow of liquid in opposite direction balances the axial thrust.	Capable of Handling Wide Variety of Fluids Clear Lubricating/non-lubricating as well as aggressive liquids can be handled due to choice of different designs and material of construction.
Higher Volumetric Efficiency	Safe to Operate
Due to special double profile of screw flanks high cavitation free suction lift.	Built-in relief valve designed to bypass excessive pressure developed in the discharge.
Due to Low NPSH Requirements.	Self Priming & Capable of Handling Entrapped Air/Vapour/Gas
Self-priming and capable of handling entrapped air Due to positive displacement action.	Due to positive displacement action and being inherently self priming.

Material Composition

Housing Components : Cast Iron, Cast Steel & Stainless Steel

Liner : Cast Iron & Stainless Steel


Screws : Alloy Steel, Nitrided Steel & Stainless Steel

Sealing Type : Mechanical Seal, Gland Packing

Air Operated Double Diaphragm (AODD) Pumps

AODD

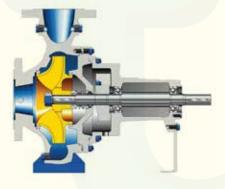
Air-Operated Double-Diaphragm (AODD) pumps are classified as reciprocating, positive-displacement-style pumps. They operate by displacing fluid from one of its two liquid chambers upon each stroke completion. To operate, the diaphragm pumps require a given amount of pressure and air volume to deliver the proper amount of fluid. The simple genius of the AODD pump design means that there are only a few wetted parts that are dynamic: the two diaphragms, which are connected by a common shaft, the two inlet valve balls and the two outlet valve balls. These pumps widely confirm to API 676, 3rd edition and are ATEX and CE certified.

		Technical Data	
Flow Rate	Up to 60 m3/h	Pressure	Up to 10 Bar
Viscosity	Up to 10,000 cST	Temperature	Up to 80°C
Aluminium	a Body	Stainless Steel Body	For PVDF Body
		Design Features	
Dry-run without damaging	g the pump or system	Submersible, can be subm	erged completely without safety or performance issue
Self-priming, works in suc	ction lift applications	Sealless design, no exper	nsive mechanical seals or packing are required
Deadheads safely, with no	p pump or product damage	Variable flow and head p	ressures, without sophisticated controls
Shear sensitive, does not	shear or separate product being pumped	Optional bottom discharg	e porting depending on fluid characteristics

Material Composition	
Housing Components : Aluminium, Stainless Steel, Polypropylene, PVDF	
Diaphragm : Nitrile, EPDM, PTFE, Teflon	
Valve Balls : Stainless Steel, PTFE, Santoprene	
Valve Seats : Rubber, PVDF, Polypropylene	

Centrifugal Pump

Etanorm


Horizontal volute casing pump, single stage with power ratings and main dimensions to EN 733 up to DN 200 with bearing bracket, in back pull out design. Back pull-out design helps to dismantle the pump keeping the casing in the pipe line. Shaft with replaceable shaft sleeve / shaft protecting sleeve in the shaft seal area. Volute casing and impeller with replaceable wear rings. Volute casing with integrally cast pump feet. Pump is incorporated with grease lubricated robust deep-groove ball bearing and mechanical seal to EN 12756 or gland packing. The efficient operation of a centrifugal pump relies on the constant, high speed rotation of its impeller. With high viscosity feeds, centrifugal pumps become increasingly inefficient: there is greater resistance and a higher pressure is needed to maintain a specific flow rate. In general, centrifugal pumps are therefore suited to high capacity pumping applications of liquids with viscosities between 0.1 and 200 cP. This pump is suitable for Handling clean and clear fluids not chemically and mechanically aggressive to the pump materials.

Technical Data

Fluid to be Handled	Clean & Clear Water	Max. Flow rate	660 m3/h
Connection Type	Flange	Min. Flow rate	1.5 m3/h
Drive Connect with	Motor / Combustion Engine	Max Head	160 M
Casing Material	Grey cast iron JL 1040 / SS 316 (CF8M)	Min Head	2 M
Impeller Material	Grey cast iron JL 1040 / SS 316 (CF8M)	Max. Allowed Working Pressure	16 bar
Shaft Material	Tempering Steel C 45 / SS 1.4462	Max. Allowed Fluid Temperature	120 °C
Bearing Bracket	Grey cast iron JL 1040	Min. Allowed Fluid Temperature	-30 °C
Shaft Seal Type	Mechanical Seal / Gland Packing	Mains Frequency	50 Hz.
Suction Behavior	Non Self-Priming	Mains Voltage	220 V / 440 V

Main App	lications
Water supply systems	Irrigation systems
Cooling circuits	Drainage systems
Swimming pools	Heating systems
Fire-fighting systems	Air-conditioning systems

Submersible Pump

CORA, BPD, BPHA, BPN

Submersible pump sets are Single stage or multi-stage single entry centrifugal pumps of ring section type with radial or mixed flow impellers connected by means of a sleeve coupling to a water filled, rewindable type AC induction motor. Pumps with radial flow impellers have renewable diffusers. Pumps with mixed flow impellers have guide vanes cast in the bowls. The different stages are connected by hook bolts in the case of radial flow pumps and bolted together in case of mixed flow pumps. The plain bearings are water lubricated. Suction casing between the pump and the motor is fitted with a suction strainer to prevent the ingress of coarse impurities. The motors are of water filled, rewindable type. The inside of the motor is sealed against the external medium by double oil seals (in back to back arrangement). The design is such as to facilitate easy dismantling and cleaning of parts.

Technical Data

Pump Type	Motor Type	Motor	Rating	Well Dia	Cable Size	Supply Voltage	Rated Current	Delivery Dia			Discha	arge (m3/hr.)			
CORA	umai / Xuma-VX	kW	HP	Inch.	Sq. mm	DOL	A	Inch.		1.1	1.6	2.0	2.5	2.8	
2c / 11	(S) 100-0.75/22	0.75	1	5	1.5	200	5.6	1.25		60	52	45	33	24	
		1			· · ·					0.0	2.0	4.0	F 0	<u> </u>	
40/17	(0) 100, 0, 0/00	0.0	0	-	0.5	000	15.5	15		2.0	3.0	4.0	5.0	6.0	
4c / 17	(S) 100-2.2/22	2.2	3	5	2.5	200	15.5	1.5		101	94	84	70	53	
										4.0	5.5	7.0	8.5	10	
7c / 10	(S) 100-1.5/22	1.5	2	5	2.5	200	11.5	1.5	-	60	55	48	38	22	
7c / 15	(S) 100-2.2/22	2.2	3	5	2.5	200	15.5	1.5	Head (M)	90	83	72	57	33	
7c / 19	100-3.0/22	3	4	5	2.5	400	7.4	1.5	ead	114	105	91	72	42	
7c / 22	100-4.5/22	4.5	6	5	2.5	400	12.4	1.5	Ť	132	121	106	84	48	
										•	•	10	4.0		
10 1100			•	-				•		6	8	10	12	14	
12c / 10G	(S) 100-10/22	2.2	3	5	2.5	200	15.5	2	Ð	59	53	45	36	26	
12c / 17	100-3.7/22	3.7	5	5	2.5	400	9.2	2	l) p	99	90	77	62	44	
12c / 21	100-4.5/22	4.5	6	5	2.5	400	12.4	2	Head	123	111	95	76	55	
12c / 27	100-5.5/22	5.5	7.5	5	2.5	400	14.3	2	-	158	142	122	98	70	
										9	12	16	20	24	
18c / 5	100-1.5/22	1.5	2	5	2.5	200	11.5	2.5		25	22	19	14	8	
18c / 7G	(S) 100-10/22	2.2	3	5	2.5	200	15.5	2.5	_	35	31	26	20	11	
18c / 9	100-3.0/22	3	4	5	2.5	400	7.4	2.5	Σ	45	40	34	25	15	
18c / 14	100-3.7/22	37	5	5	2.5	400	9.2	2.5	Head (M)	70	63	52	39	23	
18c / 17	100-4.5/22	4.5	6	5	2.5	400	12.4	2.5	Ĩ	85	76	63	48	28	
18c / <mark>20</mark>	100-5.5/22	5.5	7.5	5	2.5	400	14.3	2.5		99	90	75	56	32	

	Pump Type	Motor Type	Mo Rat		Well Dia	Cable Size	Starting method	Rated Current	Delivery Dia		Discharge (m3/hr.)							
	BPD	uma I/ H	kW	HP	Inch.	mm2		A	Inch		20	26	30	36	40	45	50	
í	273/3	(S) 150 3/22	3.7	5	8	4	DOL	28	3		31	29	28	25	22	19	15	
	273 / 4A	150 4/22	4.5	6	8	2.5	DOL	10	3	_	37	35	33	29	26	22	17	
	273/4	150 6/22	5.5	7.5	8	2.5	DOL	11.8	3	S	41	39	37	33	30	25	20	
	273/6	150 8/22	7.5	10	8	2.5	S/D	15.6	3	Head	62	58	55	49	44	38	30	
	273/8	150 13/22	11	15	8	4	S/D	22	3	Ť	83	78	73	65	59	51	40	
	273/10	150 21/21	15	20	8	4	S/D	33	3		104	97	92	82	74	63	51	
	273/12	150 24/21	18.5	25	8	6	S/D	40	3		124	116	110	98	89	76	61	

BPD	uma I/ H	kW	HP	Inch.	mm2		A	Inch		30	40	45	50	55	60	65	70
302 / 4A	150 6/22	5.5	7.5	8	2.5	DOL	11.8	3		29	26	25	23	21	18	15	12
302 / 4	150 8/22	7.5	10	8	2.5	S/D	15.6	3		39	35	33	30	27	24	20	16
302 / 5	150 9/22	9.3	12.5	8	2.5	S/D	18.5	3	Ξ	49	44	41	38	34	30	26	21
302 / 6	150 13/22	11	15	8	2.5	S/D	22	3	ad (59	53	49	45	41	36	31	25
302 / 7	150 13/22	11	15	8	2.5	S/D	22	3	Ĥ	68	61	57	53	48	42	36	29
302 / 8	150 21/21	15	20	8	4	S/D	33	3		78	70	66	60	55	48	41	33
302 / 10	150 24/21	18.5	25	8	4	S/D	40	3	1 [98	88	82	76	69	60	51	41

Submersible Pump

Main Applications	Special Features
Industrial Water Supply	High Efficiency
Domestic Water Supply	Lower Power Consumption
High Rise Building	Special Thrust Bearing Design
Fire Fighting	Water Cooled
Drip Sprinkler System	Noiseless
Irrigation	Easily Rewindable

Technical Data

Pump Type	Motor Type	Mo Rat		Well Dia	Cable Size	Starting method	Rated Current	Delivery Dia		Discharge (m3/hr.)								
BPHA	uma I/H	Kw	HP	Inch.	mm ²		Α	Inch		30	40	50	60	70	80	90	100	110
333/2E	150-6/22	5.5	7.5	10	2.5	DOL	11.8	4		-	-	27	25	23	19	16	-	-
333/2D	150-8/22	7.5	10	10	2.5	S/D	15.6	4		-	-	35	33	31	29	25	-	-
333/2C	150-13/22	11	15	10	4	S/D	22	4		-	-	37	36	34	31	27	-	-
333/3C	150-21/22	15	20	10	4	S/D	33	4	Ξ	-	60	58	56	52	48	42	35	-
333/3F	150-24/22	18.5	25	10	6	S/D	40	4	Head (M)	-	62	60	58	56	52	48	43	-
333/4C	HBC 303	22	30	10	6	S/D	43.5	4	т	-	80	77	75	69	64	56	47	40
333/5C	HBC 413	30	41	10	10	S/D	58.5	4		-	100	96	93	86	80	70	58	-
333/6C	HBC 523	38	52	10	16	S/D	74.5	4		-	120	116	112	104	96	84	70	-
BPH A	UMA I/H	Kw	HP	Inch.	mm ²		Α	Inch		50	60	70	80	90	100	110	120	130
384/2F	150-13/22	11	15	12	2.5	S/D	22	5		-	-	39	37	35	32	-	-	-
384/2D	150-21/21	15	20	12	4	S/D	33	5		48	47	46	44	41	38	35	-	-
384/2	150-24/21	18.5	25	12	6	S/D	40	5	ŝ	52	51	49	46	43	41	32	-	-
384/3G	150-24/21	18.5	25	12	6	S/D	40	5	Head (M)	62	60	58	56	52	48	43	37	30
384/3D	HBC 303	22	30	12	6	S/D	43.5	6	Ĩ	72	70	69	66	63	60	55	48	41
384/4D	HBC 413	30	41	12	10	S/D	58.5	6		96	93	92	88	84	80	73	64	55
384/5D	HBC 523	38	52	12	16	S/D	74.5	6		113	110	106	103	98	90	84	-	-
384/6D	NB 623	46	62	12	16	S/D	88	6		135	129	123	118	111	103	94	-	-
384/7D	NB 753	55	75	12	25	S/D	106	6		145	137	130	124	118	110	100	-	-

Pump Type	Motor Type	Mo Rat	otor ting	Well Dia	Cable Size	Starting method	Rated Current	Delivery Dia					Discharç	ge (m3/hr	.)			
BPN	HBC/NB	kW	HP	Inch.	mm ²		А	Inch		80	90	100	110	120	130	140	150	
374/2	HBC 303	30	30	14	6	S/D	43.5	6		52	51	50	49	48	45	42	38	
374/3	HBC 523	37	52	14	16	S/D	74.5	6		80	79	78	75	71	66	60	55	
374/4	NB 623	46	62	14	16	S/D	88	6	S	100	99	98	94	90	85	78	75	
374/4	NB 753	55	75	14	25	S/D	106	6	Head (M)	105	104	103	100	95	90	81	78	
374/5	NB 853	63	85	14	25	S/D	120	6	Ŧ	135	132	128	125	120	110	100	92	
374/6	NB 1003	75	100	14	35	S/D	142	6		160	150	145	140	135	125	111	100	
BPN	HBC/NB	kW	HP	Inch.	mm ²		А	Inch		100	110	120	130	140	150	160	170	18
394/1	HBC 253	18.5	25	14	6	S/D	40	6		29	28	27	26	26	25	24	22	1
394/2	HBC 413	30	41	14	10	S/D	58.5	6		56	56	55	54	52	50	47	44	3
394/3	NB 623	46	62	14	16	S/D	88	6	Head (M)	82	81	81	80	80	78	75	70	5
394/4	NB 853	63	85	14	25	S/D	120	6	lead	112	110	109	108	106	102	100	98	7
394/5	NB 1003	75	100	14	35	S/D	142	6	-	140	139	138	132	130	125	120	115	9
394/6	NB 1253	93	125	14	35	S/D	177	6		165	165	163	160	155	150	145	140	12
BPN	HBC/NB	kW	HP	Inch.	mm ²		А	Inch		110	125	140	155	170	185	200	210	22
425/1	HBC 303	22	30	16	6	S/D	43.5	6		30	30	30	29	28	27	25	22	1
425/2	NB 623	46	62	16	16	S/D	88	6	ŝ	65	64	63	62	61	58	56	52	3
425/3	NB 853	63	85	16	25	S/D	120	6	Head (M)	90	90	88	84	80	78	74	70	5
425/3	NB 1003	75	100	16	35	S/D	142	6	He	95	94	92	90	87	85	80	75	5
425/4	NB 1003	75	100	16	35	S/D	142	6		125	124	122	119	115	109	105	95	7

-

High Pressure Vertical Multistage Pump

DPV/DPVCF

A vertical multistage pump is a centrifugal pump containing two or more impellers. The fluid flows into the inlet of the pump casing where it flows into the eye of the impeller. The rotation of the impeller creates centrifugal force The diffusers are a type of cutwater which direct the fluid into the suction eye of the next impeller. This process continues until the fluid has passed through each impeller stage. The fluid is then directed out the pump casing through a final diffuser and into the pump discharge. Each stage that the fluid passes through increases the discharge pressure. Multistage pumps are used when higher pressures are required which single stage pumps of the same size are unable to attain. Vertical Multistage pumps are installed in applications where higher pressures are required including industrial, commercial, medical, industrial, high-rise buildings, municipal water supply. Its also used in Booster system as well as Boiler feed water transport.

Technical Data

Model	Size in mm		Motor	Rating	Head	Discharge
DPV/DPVCF	Suc.	Del.	KW	HP	М	m3 / hr.
DPVCF 2/5B			0.37	0.5	40-10	
DPVCF 2/8B	25	25	0.55	0.75	58-15	0.5-3.5
DPVCF 2/18B	20	20	1.5	2	138-45	0.5-5.5
DPVCF 2/24B			2.2	3	182-60	
DPVCF 4/4B			0.55	0.75	32-9	
DPVCF 4/5B			0.75	1	42-15	
DPVCF 4/7B			1.1	1.5	50-22	
DPVCF 4/10B	25	25	1.5	2	88-35	1-7
DPVCF 4/14 B			2.2	3	122-50	
DPVCF 4/20 B			3	4	180-88	
DPVCF 4/26 B			4	5.5	232-100	
DPVCF 6/5B			1.1	1.5	48-20	
DPVCF 6/7B			1.5	2	68-40	
DPVCF 6/10B	32	32	2.2	3	95-45	2-10
DPVCF 6/14B			3	4	135-68	
DPVCF 6/18 B			4	5.5	175-88	
DPVCF 10/4B			1.5	2	45-22	
DPVCF 10/6B			2.2	3	65-32	-
DPVCF 10/7B			3	4	80-42	2.7-14
DPVCF 10/8B	40	40	3	4	88-48	
DPVCF 10/11B			4	5.5	125-65	
DPVCF 10/13B			5.5	7.5	148-82	

Model	Size in mm		Motor	^r Rating	Head	Discharge
DPV/DPVCF	Suc.	Del.	KW	HP	М	m3 / hr.
DPVCF 15/2B			2.2	3	28-15	
DPVCF 15/3B			3	4	42-25	
DPVCF 15/4B			4	5.5	57-32	
DPVCF 15/5B	50	50	5.5	7.5	72-42	5-25
DPVCF 15/6B			5.5	7.5	50-88	
DPVCF 15/7B			7.5	10	102-60	
DPVCF 15/8B			7.5	10	118-70	
DPVCF 25/3B	65		5.5	7.5	62-38	_
DPVCF 25/4B		65	7.5	10	83-50	7 - 35
DPVCF 25/5B			11	15	60-105	
DPVCF 40/2B			7.5	10	28-50	
DPVCF 40/3B	80	80	11	15	42-78	10-54
DPVCF 40/4B			15	20	100-58	
DPVCF 60/2	100	100	7.5	10	30-60	10-58
DPVCF 60/2-2B					40-15	19-80
DPVCF 60/2B			11	15	58-30	10-76
DPVCF 85/1B			7.5	10	28-18	
DPVCF 85/2-1B			15	20	55-30	
DPVCF 85/2B	100	100	15	20	58-34	8-112
DPVCF 85/6B			45	60	100-178	

Main Applications
Water Supply Systems
High Pressure Water Jet Making
Pressure Boosting
Condensate Transport
Boiler Feed Applications
Fire-Fighting Systems

Vertical Inline Pump

Etaline

In the Vertical Inline Pumps, the inlet and outlet are inline. This arrangement is typically used where space is limited such as onboard a ship, Generator Jacket Cooling etc. This type of pumps can be made to various designs which include spacer couplings to enable maintenance to be carried out without removal of motors reducing downtime. In monobloc designs, an inline pump will usually have a single shaft connecting the motor to the pump head meaning the motor bearings bear the full rotary load of the shaft during operation. This design of pump is better suited for short duties at full motor speed, and light duties. During maintenance the motor and pump must be disassembled with the mechanical seal refitted at the same time as motor fitting.

Technical Data

Fluid to be Handled	Clean & Clear Water	Max. Flow Rate	400 m3/h
Connection Type	Flange	Min. Flow Rate	2 m3/h
Drive Connect with	Electric Motor	Max. Head	102 M
Casing Material	Grey Cast Iron	Min. Head	2 M
Shaft Material	Tempering Steel C 45 / SS 1.4462	Max. Casing Pressure	16 bar
Impeller Material	Grey Cast Iron	Max. Allowed Fluid Temperature	140 °C
Shaft Seal Type	Mechanical Seal	Min. Allowed Fluid Temperature	-30 °C
Suction Behavior	Non Self-Priming	Mains Frequency	50 Hz.
Pump Type	Monobloc	Mains Voltage	220 V / 440 V

Main Applications					
Generator Coolant Circulation	Water Supply				
Air-Conditioning Systems	Industrial Recirculation Systems				
Cooling Circuits	Heat Recovery Systems				
Heating Systems	Service Water Supply Systems				

INFRA-TECH LTD.

Thermal Oil Transfer Pump

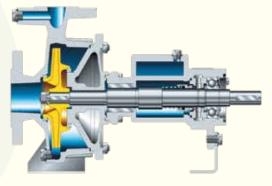
Etanorm SYT

Horizontal volute casing pump in back pull-out design, single-stage, with ratings and dimensions to EN 733, radially split volute casing with integrally cast pump feet, replaceable casing wear rings, closed radial impeller with multiply curved vanes, single mechanical seal to EN 12756, double mechanical seal to EN 12756, drive-end bearings. The Etanorm SYT single-stage volute casing pumps from KSB now include a stable rib design and reinforced bearings which makes them resistant to external forces, making them suitable for the transfer of efficient synthetic oils. The Etanorm SYT range now also features a new vent design through which gases can be removed during operation. For very critical fluids a variant with double mechanical seal has been introduced. The Etanorm SYT single-stage volute casing pumps from KSB are suitable for the transfer of hot water as well as mineral oil based thermal fluids and synthetic thermal oils at temper-tures of up to 350°C.

Technical Data

Fluid to be Handled	Mineral and Synthetic Thermal Oil	Allowed Fluid Temperature	For Thermal Oil up to 350°C
Connection Type	Flange	Allowed Fluid Temperature	For Hot Water up to 180°C
Drive Connect with	Motor / Combustion Engine	Min. Allowed Fluid Temperature	-30°C
Casing Material	EN-GJS-400-15 / A 536 GR 60-40-18	Max. Flow Rate	754 m3/h
Impeller Material	EN-GJL-250 / A 48 CL 35B	Min. Flow Rate	1.5 m3/h
Shaft Material	1.4021 + QTHRC55	Max Head	102 M
Shaft Seal Type	Mechanical Seal	Max. Pressure	16 Bar
Suction Behavior	Non Self-Priming	Mains Frequency	50 Hz.
Ритр Туре	Bare Shaft Pump	Mains Voltage	220 V / 440 V

Main Applications


Thermal Oil Transfer

Hot Water Transfer

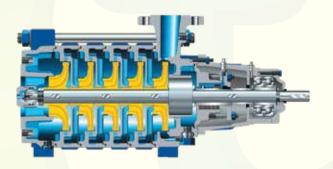
Thermal Boiler

High Temperature Liquid Transfer

Horizontal Multistage Pump

WK / WL / MOVI / MULTITEC

Horizontal Multistage Centrifugal Pump in ring-section design, long-coupled or close-coupled, with axial or radial suction nozzle, cast radial impellers and motor-mounted variable speed system. Multistage pumps are defined as pumps in which the fluid flows through several impellers fitted in series. The head of a single-stage centrifugal pump is largely governed by the type of impeller and the circumferential speed. If the rotational speed cannot be increased due to other operating conditions and a larger impeller diameter would lead to very low specific speeds resulting in uneconomical efficiencies, fitting several stages in series can be an economic option of increasing the head. If the number of stages is altered at unchanged dimensions and speeds, the flow rate of such a multistage pump remains constant while the power input and head increase proportionally to the number of stages. This type of pump is often used in power station applications, e.g. as a boiler feed pump and in industrial applications requiring high pressures.


Technical Data					
Fluid to be Handled	Clean & Clear Water	Max. Flow Rate	630 m3/h		
Connection Type	Flange	Min. Flow Rate	1.5 m3/h		
Connection Type	Motor / Combustion Engine	Max Head	800 M		
Casing Material	Grey Cast Iron	Min. Head	2 Bar		
Impeller Material	Grey Cast Iron	Max. Working Pressure	63 Bar		
Shaft Material	1.4408 / A743 Gr. CF8 M	Max. Allowed Fluid Temperature	230 °C		
Shaft Seal Type	Mechanical Seal	Min. Allowed Fluid Temperature	-10°C		
Suction Behavior	Non Self-Priming	Mains Frequency	50 Hz.		
Ритр Туре	Bare Shaft Pump	Mains Voltage	220 V / 440 V		

Main Applications				
Water Supply Systems	Condensate Transport			
High Pressure Water Jet Making	Boiler Feed Application			
Pressure Boosting System	Fire-Fighting System			
Sprinkler Irrigation System	High-Rise Building			

NNOVATION

INFRA-TECH LTD.

Self Priming Centrifugal Pump

SPnorm

In normal condition, common centrifugal pumps are unable to evacuate the air from an inlet line leading to a fluid level whose geodetic altitude is below that of the pump. Self-priming pumps have to be capable of evacuating air from the pump suction line without any external auxiliary devices. Centrifugal pumps which are not designed with an internal or external self-priming stage can only start to pump the fluid after the pump has initially been primed with the fluid. In addition, a suction-side swing check valve or a vent valve must be fitted to prevent any siphon action and ensure that the fluid remains in the casing when the pump has been stopped. In self-priming centrifugal pumps with a separation chamber the fluid pumped and the entrained air bubbles are pumped into the separation chamber by the impeller action

	Technica	i Dala	
Fluid to be Handled	Muddy Water, Sewage, Polluted Liquid	Max. Flow Rate	253 m3/h
Connection Type	Flange	Min. Flow Rate	1.5 m3/h
Drive Connect with	Motor / Combustion Engine	Max Head	50 M
Casing Material	Grey Cast Iron	Min Head	2 M
Impeller Material	Grey Cast Iron	Max. Allowed Fluid Temperature	140 °C
Shaft Material	Tempering Steel C 45 / SS 1.4462	Min. Allowed Fluid Temperature	-30°C
Shaft Seal Type	Mechanical Seal / Gland Packing	Mains Frequency	50 Hz.
Suction Behavior	Self-Priming	Mains Voltage	220 V / 440 V
Ритр Туре	Bare Shaft / Monobloc	Bearing Bracket	Grey Cast Iron

Technical Data

Main Applications

Industrial : Pumping Petroleum Products, Chemicals, Effluents, Sewage, Ash-Water Etc

Tiles & Marble industry : For Handling Waste Water.

Civil Construction : De-Watering Foundation, Trenches and Pits.

Public Utilities : Sewage Pumping.

Deep Tube-well & Recharge Well

We offer a wide range of machine made bore well drilling for domestic, institutional, organizational and industrial requirements.

We also offer

- Removal & Lowering of Submersible Pump.
- De-silting, flushing and cleaning of existing bore wells by Jet wash or Chemical wash.

Fire Fighting System (Protection & Detection)

We are committed to providing the most comprehensive and reliable fire fighting equipment and services to protect lives and properties. Our customers can be assured by the best design, manufacturing to delivery, installation, training and support services to ensure optimum performance of the systems.

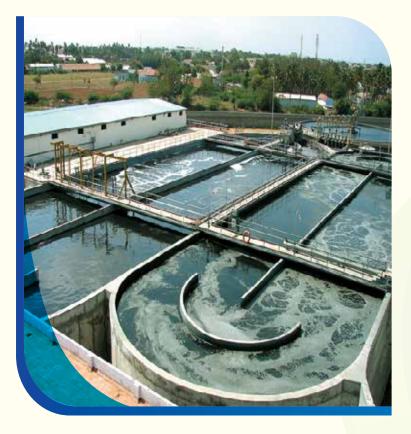
Auto Pressurized Water Supply (Booster) System

Pumping & Plumbing System

Fully automatic pressure boosting package unit with horizontal / vertical high pressure pumps, with continuously variable speed adjustment of any pump for fully electronic control to ensure the required supply pressure.

Capacity (Q) Head (H) Pump Brand : Up to 650 m3/hr. : Up to 250 M : DP, Holland

Pumping stations are facilities including pumps and equipment for pumping fluids from one place to another. They are used for a variety of infrastructure systems, such as the supply of water to residential building, industry and goverment construction projects.



Water Treatment Plant

Effluent Treatment Plant

Water Treatment Plant is a process that makes water more acceptable for a specific end-use. The end used may be drinking water, industrial water or others supply.

- R0
- DM Plant
- Sand Filter

Effluent Treatment Plant is the process of treating waste water that is contaminated by industrial or commercial wastes. Water and Energy savings involvement business to treat waste water and save the energy for our country. Our commitment is that to save our land and river for the future generation.

- Physio-Chemical
- Bio Chemical
- Biological

Solar System

We are a professional green energy solution provider, who are committed to providing renewable energy service for customers in Residential, Government and Industrial sectors. Our business covers project development, design, installation, operation and maintenance of Solar Power System.

- We are Supplying

 On-Grid Solar System
- Off-Grid Solar System
- Irrigation Pump with Solar System
- Street Light with Solar System

Substation

We are expert in the Design, Installation, Testing, Commissioning, and Maintenance of substation equipment for various industrial, commercial, and residential projects. We are supplying

- Transformers
- HT & LT Switchgear
- Power Factor Improvement (PFI) Plant
- Along with all accessories

Our Major Clients

INNOVATION INFRA-TECH LTD.

- Care Lake Front, House: 16/A (2nd Floor)
 Road: 09, Gulshan-Badda Link Road, Gulshan-1
 Dhaka-1212, Bangladesh.
- (+88 02-41080041, +88 01329 681 900
- ➤ innotechbd71@gmail.com
- S www.inno-techbd.com